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ductions ever achieved with optically active 1,4-dihydropyri-
dines.6 The consistent formation of an excess of the S enan-
tiomer (the relative priorities of the groups are the same for 
all the optically active alcohols allowing direct comparison) 
strongly suggests structurally related transition states for re
duction. 1H NMR shielding effects in the presence of Mg2+ 

indicate complexation of Mg2+ close to the diethylene glycol 
bridge of 6. Assuming that the oxygen of carbonyl group 
complexes to Mg2+ with the carbonyl carbon oriented toward 
the 4 position of the 1,4-dihydropyridine, that the phenyl 
substituent is the largest group, and that complexed a-dicar-
bonyl compounds assume a cis conformation for the carbonyl 
groups, the observed 5 configurations can be predicted. It is 
important to note that 6 is rather rigid owing to the two amide 
linkages. 

Further experiments are in progress.19 
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Extraordinary Reactivity of the Prostaglandin 
Endoperoxide Nucleus. Nonpolar Rearrangement of 
2,3-Dioxabicyclo[2.2.1]heptane and -[2.2.2]octane 

Sir: 

Occasionally Nature provides us with molecules which not 
only have unusual structures, but which also exhibit extraor
dinary chemical reactivity. Prostaglandin (PG) endoperoxides1 

(e.g., 1) possess an unusual bicyclic peroxide nucleus 2.2 They 
are a branch point in the oxidative transformation of polyun
saturated fatty acids into a vast array of physiologically active 
metabolites.3 The biological role of 1 depends in large measure 
on enzymatic conversion into prostaglandins (e.g., 3, 4), 
thromboxane A2 (5),4 and prostacyclin (6).5 To provide a basis 

tV1 
R' 2 

HQ 2 

Hd 

1 , R" = CH=CHCH(OH)C H 

R2 = CH 2CH=CH(CH 2 ) 3COOH 

R 1 = R 2 - H 

COOH 

for interpreting the complex biochemistry of 1, we are studying 
the chemistry of the model endoperoxide 2 and homologues. 
We now report that the abnormally large solvent effects found 
for thermal decompositions of 26 are not observed for de
composition of the less strained homologue, 2,3-dioxabicy-
clo[2.2.2]octane (7).7 Furthermore, activation enthalpies and 
entropies for thermal decomposition of 2, of the homologue 7, 
and of tert-butyl peroxide in cyclohexane are remarkably 
different. A//* increases with decreasing strain in the se
ries. 

Thermal decompositions of 2 and 77 were monitored by 1H 
N MR. Relative rates in various solvents are listed in Table I. 
Both reactions follow first-order kinetics. As reported previ
ously, the rate of decomposition of 2 increases with solvent 
polarity and is exceptionally rapid in protic solvents owing 
primarily to an extraordinary dependence of the rate of rear
rangement to levulinaldehyde (8) on solvent polarity.6 The 
parallel first-order rearrangement of 2 to 9 is a nonpolar pro
cess which shows only a small dependence on solvent polarity. 

^ 

In contrast, the rate of decomposition of 7 varies only slightly 
and erratically with changes in solvent polarity. The modest 
acceleration found for decomposition of 7 in protic solvents 
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Table I. Solvent Effects for Decomposition of Peroxides 2 and 7 

reaction 
solvent 

cyclohexane-rf|2 
benzene-^6 
chlorobenzene 
CD3COOD 
CICD2CD2Cl 
2-butanone 
CD3CN 
H2O 

dielectric 
constant" 

1.94 
2.18 
4.85 
6.63 
7.94 

14.35 
28 
73 (at 40 0C) 

rel rates 
7 (at 13O0C) 

1.0* 
0.8 
1.1 
2.7 
1.5 
1.3 
1.8 
6.2 

2 (at 73 0C) 

l.C 
1.4 
2.4 

26.0 
2.7 
2.8 
4.4 
d 

" Estimated for 73 0C. * k = 5.2 X 10~5 s"1 

d k = 160X 10-5(at40°C). 
k =4.4 X 10-5S-

Table H. Solvent Effects on Yields of Ethylene from 
Decomposition of 7 

reaction 
solvent 

cyclohexane-</|2 
benzene-^6 
chlorobenzene 

ethylene 
yield, % 

23 
37 
31 

reaction 
solvent 

CD2ClCD2Cl 
CD3CN 

Table IH. Rate Constants for Thermal Decomposition 
Cyclohexane-d12 

peroxide 

ethylene 
yield, % 

37 
100 

of 2 and 7 in 

reaction 
temp, 0C AXlO5, , S - ' 

2 
2 
2 
2 
2 

7 
7 
7 
7 
7 
7 
7 

57.0 
60.0 
65.0 
73.0 
76.0 

120.0 
130.0 
131.0 
135.0 
140.0 
145.0 
150.0 

0.95 ±0.15 
1.57 ± 0.14 
2.69 ± O.i 1 
4.44 ± 0.27 
6.55 ±0.31 

2.03 ±0.15 
5.24 ±0.21 
5.56 ±0.21 
8.85 ±0.57 

13.46 ± 1.8 
25.06 ± 1.0 
44.02 ± 1.3 

contrasts with the uniquely profound effect observed for 2.6 

Thus, even the close analogue 7 does not possess the unusual 
reactivity of the biologically important bicyclic peroxide 2. 

Both succinaldehyde (10) and ethylene were produced in 
decomposition of 7. However, 10 is not stable under the reac-

d • W 

Rate constants for decompositions of 2 and 7 at various 
temperatures with an initial concentration of 0.5 M are listed 
in Table III.9 Rate constants were also determined for de
composition of 2 at 73 0 C with initial concentrations of 0.13, 
0.10, 0.050, and 0.025 M. Each determination gave the same 
rate within the precision of the measurements (±4%).' • In the 
presence of inhibitors12 (nitrobenzene, styrene, BHT, acry-
lonitrile, methyl methacrylate) (0.5 M), decomposition of 2 
at 76.0 0 C is slightly accelerated (8.37 to 10.07 X 10~5 s - 1 ) . 
Similarly for 7 at 130.0 0 C, nitrobenzene (0.5 M) has no effect 
on decomposition rate while BHT (0.5 M) causes a slight in
crease (6.77 X 1O-5 s - 1 ) . These results probably reflect the 
effect of the protic or polar character of the inhibitors. The 
failure to observe rate decreases in the presence of inhibitors 
or at lower initial concentrations suggests the absence of in
duced radical-chain reactions12 in decompositions of 2 and 7 
in cyclohexane-^12- Activation parameters calculated from 
the rate constants listed in Table III are given in Table IV to
gether with parameters for thermal decomposition of tetra-
methyl-l,2-dioxolane ( H ) 1 3 and ;m-butyl peroxide.14 

As expected for a reaction involving rate determining ho-
molysis of the peroxide bond, the activation entropy for thermal 
decomposition of rert-butyl peroxide in cyclohexane is +15 to 
+21 eu.14 The rate of this nonpolar process shows only a small 
dependence on solvent polarity.14 A similarly small solvent 
dependence of the rate and an identical AG* are found for the 
2 -* 9 rearrangement.6 However, the large negative activation 
entropy found for the latter rearrangement (i.e., —19 eu) is 
remarkable. It seems unlikely that this low AS** can be as
cribed15 to efficient reclosure of 12 to 2 since 2 incorporates 
considerable strain not found in 12. Moreover, reclosure of a 

th *»== "^k 
2 12 

corresponding intermediate from 7 should be more likely, but 
the activation entropy for the decomposition of 7 is neither 
large nor negative. Elegant studies by Adam and Duran un
covered evidence including substituent effects which supports 
a concerted /3-scission mechanism for decomposition of tet-
ramethyl-l,2-dioxolane (H) . 9 This reaction, which affords 
major products 13 and 14 analogous to 9, also exhibits a large 
negative activation entropy (i.e., —24 eu in benzene).9 It was 

4 
10 

A 
tion conditions. Yields of ethylene, determined by GLC after 
conversion into 1,2-dibromoethane, are listed in Table II for 
various reaction solvents. The quantitative yield of ethylene 
in acetonitrile is consistent with the ability of this solvent to 
promote fl scission of alkoxy radicals.8 

13 14 

speculated that only very specific conformations of this flexible 
peroxide are appropriate for concerted fl scission and that the 
low activation entropy might be explained in terms of the low 

Table IV. Activation Parameters for Decomposition of Dialkyl Peroxides 

peroxide 
reaction 
solvent 

reaction 
temp, 0C 

AH*, 
kcal/mol 

AS*, 
eu 

AG*, 
kcal/mol11 ref 

2 
7 

11 

?+ 
+ ° 

cyclohexane-Ju 
cyclohexane-^12 
benzene 

cyclohexane 

57-76 
120-150 
190-218 

120-135 

20.7 ± 1.8 
33.1 ± 1.2 
27.0 ± 1.0 

40.8 ± 2.2 
38.4 

— 19 ±5 
3 ± 3 
-24.0 ± 2.0 

21.1 ± 1.4 
15.2 

30.2 
31.4 
39.4 

30.3 
30.8 

b 
b 
13 

14a 
14b 

<• Calculated at 500 K (this work). * This work. 
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probability of achieving the appropriate conformation.9 Such 
an explanation cannot be operative for decomposition of 2 since 
this strained bicyclic peroxide is conformationally rigid. 
Nevertheless, the similarity of reaction products and activation 
entropies suggest that the 2 —* 9 rearrangement might also 
involve homolysis of the 0 - 0 bond with concerted (3 scission 
of a C-C bond in the transition state as indicated in 15. 

15 

Geometric constraints imposed by the rigid bicyclic struc
ture of the peroxide 2 should weaken the O-O bond owing to 
strain and unfavorable juxtaposition of vicinal nonbonding 
electron pairs on oxygen. Indeed, A//* is considerably lower 
for nonpolar decomposition of 2 (21 kcal mol-1) than for 
tert-buly\ peroxide (38-41 kcal mol-1)- However, unexpect
edly high thermal stability for 2, as for 11, is associated with 
an extraordinarily large negative activation entropy. 
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Electrochemical Study of the Generation and Fate 
of Iron Dinitrosyl, a Powerful Catalyst for 
C-C Bond Formation from Dienes 

Sir: 

The building up of a selective catalyst remains a challenge 
to anyone interested in homogeneous catalysis. Vacant sites 
as well as specific ancillary ligands are needed. Reductive 
elimination of appropriate ligands has been proposed for the 
first purpose1 and for the second one nitrosyl ligands were 
suggested owing to their electronic properties.2 In this respect 
iron nitrosyl complexes exhibit a new selectivity toward the 
cyclodimerization of dienes.3 For example Fe(CO)2(NO)2, 
Fe(T7-C3H5)(CO)2NO,4 [Fe(NO)2Cl]2 + C2H5MgBr,5 

[Fe(NO)2Cl]2 + (C3Hs)2Sn,6 Na[Fe(CO)3NO] + 
[M(NO)2X]2 (M = Fe, Co; X = Cl, Br, I),7 [Fe(NO)2Cl]2 + 
Ni(CO)4,8 and [Fe(NO)2Cl]2 + Zn9 convert selectivity bu
tadiene to 4-vinylcyclohexene. The catalytic species has been 
claimed to be "Fe(NO)2" without further characterizations 
owing to the complexity of the reaction medium. The genera
tion and the identification of this moiety has retained our at
tention for two purposes: (i) the chemistry of dinitrosyl com-
plexes20'10 and (ii) the economical importance of 4-vinylcy
clohexene as a styrene precursor.11 The complex [Fe(NO)2Cl]2 
is a valuable precursor as a one-electron reduction can lead to 
"Fe(NO)2".12 The reduction can be achieved chemically and 
electrochemically. The electrochemistry, in nonaqueous sol
vents, of some related nitrosyl iron complexes has already been 
reported.13 However, no electrochemical data on [Fe-
(NO)2Cl]2 are available and, more generally, connections 
between electrochemistry and catalysis are scarcely de
scribed.14 We report here on the electrochemical behavior of 
[Fe(NO)2Cl]2 in association with catalysis in the cyclodi
merization of norbornadiene (ndb), isoprene (is), and buta
diene (bd). Comparison between catalytic runs performed in 
the electrochemical cell and by reduction with Zn definitely 
proves that the moiety "Fe(NO)2" 12 is the active species. 

All of the experiments were carried out in deoxygenated 
tetrahydrofuran (thf). The dissolution of the dimer [Fe-
(NO)2Cl]2 occurs instantaneously leading to the paramagnetic 

Scheme la 

[Fe(NO)2Cl]2 —* 2Fe(NO)2ClS,, (1) 

Fe(NO)1ClSn*=* [Pe(NO)1Sn]^Cl- (2) 

oxidation 
A wave: 

2Fe(NO)2ClSn + 2Hg ~4e » 2Fe2+ + 4NO + Hg2Cl2 (3) 

reduction 
B wave: 

Fe(NO)2ClSn -!—* Fe(NO)2Sn + Cl" (4) 

Fe(NO)2ClSn +Cl" —* [Fe(NO)2Cl2]- (5) 

C wave: 

[Fe(NO)2Cl,]- = 4 = * [Fe(NO)2Cl2]2- (6) 

[Fe(NO)2Cl2]2- —+ Fe(NO)2Sn + 2Cl" (7) 
D wave: 

[Fe(NO)2Cl2]2- - £ l * [Fe(NO)2Cl2]3- (8) 

[Fe(NO)2Cl2]3- —*• [Fe(NO)2Sn ]" + 2Cl" (9) 
E wave: 

Fe(NO)2Sn = ^ = * [Fe(NO)2Sn]- (10) 

0 Sn represents molecules of tetrahydrofuran as ligands. 
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